Аннотация к рабочей программе по физике 7-8 классы

Уровень обучения (класс) основное общее образование, 7-9 класс

Количество часов 170

Уровень базовый

Программа разработана в соответствии с федеральным государственным образовательным стандартом основного общего образования, Примерной основной образовательной программы, Примерной программы по физике, авторской программы А.В. Перышкина по физике для 7-9 классов

- _ Рабочая программа учебного предмета разработана в соответствии с требованиями Федерального закона от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации»,
- Федерального государственного образовательного стандарта основного общего образования, утверждённого приказом Министерства образования

и науки Российской Федерации от 17 декабря2012 г. №1897;

- **Примерной** основной образовательной программы образовательного учреждения. Основная школа / Сост. Е. С. Савинов. М.: Просвещение, 2011;
- Примерной программы основного общего образования по физике. 7-9 классы (В. А. Орлов, О. Ф. Кабардин, В. А. Коровин, А. Ю. Пентин, Н. С. Пурышева, В. Е. Фрадкин, М., «Просвещение», 2013 г.);
- Авторской программы А.В. Перышкина по физике для 7-9 классов. Программа основного общего образования. Физика. 7-9 классы Авторы: А.В. Перышкин, Н.В. Филонович, Е.М. Гутник.

Рабочая программа предназначена для преподавания дисциплины «Физика» на базовом уровне в 7-9 классах МОУ «Заречная СОШ».

Обоснованность рабочей программы.

Физика — фундаментальная наука, имеющая своей предметной областью общиезакономерности природы во всем многообразии явлений окружающего нас мира. Физика — наука о природе, изучающая наиболее общие и простейшие свойства материального мира. Она включает в себя как процесс познания, так и результат — сумму знаний, накопленных на протяжении исторического развития общества. Этим и определяется значение физики в школьном образовании. Физика имеет большое значение в жизни современного общества и влияет на темпы развития научно-технического прогресса.

Обоснование выбора учебно-методического комплекта для реализации рабочей программы по предмету

Преподавание курса «Физика» в 7-9 классе ориентировано на использование учебников:

- А.В. Перышкин Физика 7 класс. Учебник для общеобразовательных учреждений.- М.: Дрофа, 2015 г.
- А.В. Перышкин Физика 8 класс. Учебник для общеобразовательных учреждений.- М.: Дрофа, 2015 г.
- А.В. Перышкин, Е.М. Гутник. Физика 9 класс. Учебник для общеобразовательных учреждений.- М.: Дрофа, 2015 г., которые входят в Федеральный перечень учебников, утверждённый приказом Министерства образования и науки Российской Федерации от 19 декабря 2012 г. N 1067 «Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2013/14 учебный год".

Достоинством учебников данного УМК являются ясность, краткость и доступность изложения, подробно описанные и снабженные рисунками демонстрационные опыты и экспериментальные задачи. Все главы учебника содержат богатый иллюстративный материал. В 2012 г.издательство «Дрофа» совместно с издательством «Вертикаль» выпустило учебник для 7 класса в новом оформлении и с электронным приложением, которое размещено на сайте издательства «Дрофа». Учебники рассчитаны на такую структуру, при которой на первой ступени профильное обучение не вводится. Он включает весь необходимый теоретический материал по физике для изучения в общеобразовательных учреждениях. Учебник отличается простотой и доступностью изложения материала, предусматривается выполнение упражнений, которые помогают не только закрепить пройденный теоретический материал, но и научиться применять на практике.

1. Общая характеристика учебного предмета.

Школьный курс физики — системообразующий для естественнонаучных учебных предметов, т.к. физические законы лежат в основе содержания курсов химии, биологии, географии и астрономии. Он раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения.

Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов обучающихся в процессе изучения физики основное внимание уделяется не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от обучающихся самостоятельной деятельности по их разрешению.

Курс физики в программе основного общего образования структурируется на основе рассмотрения различных форм движения материи в порядке их усложнения: механические явления, тепловые явления, электромагнитные явления, квантовые явления. Физика в основной школе изучается на уровне рассмотрения явлений природы, знакомства с основными законами физики и применением этих законов в технике и повседневной жизни.

В результате изучения физики дальнейшее развитие получат личностные, регулятивные, коммуникативные и познавательные универсальные учебные действия, учебная (общая и предметная) и общепользовательская ИКТ-компетентность обучающихся, составляющие психолого-педагогическую и инструментальную основы формирования способности и готовности к освоению систематических знаний, их самостоятельному пополнению, переносу и интеграции; способности к сотрудничеству и коммуникации, решению личностно и социально значимых проблем и воплощению решений в практику; способности к самоорганизации, саморегуляции и рефлексии.

Изучение физики на данном этапе физического образования направлено на достижение следующих целей:

- понимание учащимися смысла основных научных понятий и законов физики, взаимосвязи между ними;
- формирование у учащихся представлений о физической картине мира.
- овладение умениями проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения интеллектуальных проблем, задач и выполнения экспериментальных исследований; способности к самостоятельному приобретению новых знаний по физике в соответствии с жизненными потребностями и интересами;
- воспитание убежденности в познаваемости окружающего мира, в необходимости разумного использования достижений науки и технологии для дальнейшего развития человеческого общества, уважения к творцам науки и техники; отношения к физике как к элементу общечеловеческой культуры;
- применение полученных знаний и умений для решения практических задач повседневной жизни, для обеспечения безопасности.

В задачи обучения физике входят:

- развитие мышления учащихся, формирование у них навыка самостоятельно приобретать и применять знания, наблюдать и объяснять физические явления;
- овладение школьными знаниями об экспериментальных фактах, понятиях, законах, теориях, методах физической науки; о современной научной картине мира; о широких возможностях применения физических законов в технике и технологии;
- усвоение школьниками идей единства строения материи и неисчерпаемости процесса ее познания, понимание роли практики в познании физических явлений и законов;
- формирование познавательного интереса к физике и технике, развитие творческих способностей, осознанных мотивов учения; подготовка к продолжению образования и сознательному выбору профессии;
- знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;

- приобретение учащимися знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления;
- формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни:
- овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки.

Изучение физики направлено на выработку компетенций:

общеобразовательных:

- умения самостоятельно и мотивированно организовывать свою познавательную деятельность (от постановки до получения и оценки результата);
- умения использовать элементы причинно-следственного и структурнофункционального анализа, определять сущностные характеристики изучаемого объекта, развернуто обосновывать суждения, давать определения, приводить доказательства;
- умения использовать мультимедийные ресурсы и компьютерные технологии для обработки и презентации результатов познавательной и
- практической деятельности;
- умения оценивать и корректировать свое поведение в окружающей среде, выполнять экологические требования в практической деятельности и повседневной жизни.

предметно-ориентированных:

- понимать возрастающую роль науки, усиление взаимосвязи и взаимного влияния науки и техники, превращения науки в непосредственную производительную силу общества;
- осознавать взаимодействие человека с окружающей средой, возможности и способы охраны природы;
- развивать познавательные интересы и интеллектуальные способности в процессе самостоятельного приобретения физических знаний с использований различных источников информации, в том числе компьютерных;
- воспитывать убежденность в позитивной роли физики в жизни современного общества, понимание перспектив развития энергетики, транспорта, средств связи и др.;
- овладевать умениями применять полученные знания для получения разнообразных физических явлений;
- применять полученные знания и умения для безопасного использования веществ и механизмов в быту, сельском хозяйстве и производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

Использование методов и педагогических технологий, направленных, на реализацию базовой образовательной программы по физике

Формированию необходимых ключевых компетенций способствует использование современных образовательных технологий:

- технологии проблемного обучения,
- технологии интегрированного обучения,
- технология игрового обучения,
- технология мозгового штурма (письменный мозговой штурм, индивидуальный мозговой штурм);
- технология интенсификации обучения на основе схемных и знаковых моделей учебного материала
- технологии развития критического мышления через чтение и письмо;
- технология обучения смысловому чтению учебных естественнонаучных текстов;
- технология проведения дискуссий;
- технология «Дебаты»;
- технология обучения на примере конкретных ситуаций
- информационные технологии: использование компьютера для поиска необходимой информации, создание проектов, отчетов,
- технология развивающего обучения
- технологии индивидуального обучения
- ситуация-проблема прототип реальной проблемы, которая требует оперативного решения (с помощью подобной ситуации можно вырабатывать умения по поиску оптимального решения);
- ситуация-иллюстрация прототип реальной ситуации, которая включается в качестве факта в лекционный материал (визуальная образная ситуация, представленная средствами ИКТ, вырабатывает умение визуализировать информацию для нахождения более простого способа её решения);
- ситуация-оценка прототип реальной ситуации с готовым предполагаемым решением, которое следует оценить и предложить своё адекватное решение;
- ситуация-тренинг прототип стандартной или другой ситуации (тренинг возможно проводить как по описанию ситуации, так и по её решению).

На повышение эффективности усвоения основ физической науки <u>используются</u> следующие методы:

Объяснительно-иллюстративный, репродуктивный, проблемное изложение, беседа, лекция, работа с книгой, демонстрационный эксперимент, практические методы (решение задач, лабораторные занятия: фронтальные лабораторные работы, домашние наблюдения и опыты), самостоятельная работа, контроль (тестирование, письменные контрольные работы, физические диктант, взаимоконтроль зачет и т.д.) и самоконтроль.

Формы организации образовательного процесса

- урок-исследование,
- урок-лаборатория,
- урок-творческий отчёт,
- урок изобретательства,
- урок «Удивительное рядом»,
- урок-рассказ об учёных,

- урок-защита исследовательских проектов,
- урок-экспертиза,
- урок «Патент на открытие»,
- урок открытых мыслей;
- учебный эксперимент, который позволяет организовать освоение таких элементов исследовательской деятельности, как планирование и проведение эксперимента, обработка и анализ его результатов;
- домашнее задание исследовательского характера может сочетать в себе разнообразные виды, причём позволяет провести учебное исследование, достаточно протяжённое во времени.

2. Место предмета в учебном плане.

Программа рассчитана на изучение базового курса физики учащимися 7-9 классов в течение 208 часов (в том числе в 7 классе - 70 учебных часов из расчета 2 часа в неделю, в 8 классе - 70 учебных часов из расчета 2 часа в неделю и в 9 классе - 68 учебных часов из расчета 2 часа в неделю) в соответствии с учебным планом МОУ «Заречная СОШ».

4. Личностные, метапредметные и предметные результаты освоения учебного предмета.

С введением ФГОС реализуется смена базовой парадигмы образования со «знаниевой» на «системно-деятельностную», т. е. акцент переносится с изучения основ наук на обеспечение развития УУД (ранее «общеучебных умений») на материале основ наук. Важнейшим компонентом содержания образования, стоящим в одном ряду с систематическими знаниями по предметам, становятся универсальные (метапредметные) умения (и стоящие за ними компетенции).

Поскольку концентрический принцип обучения остается актуальным в основной школе, то развитие личностных и метапредметных результатов идет непрерывно на всем содержательном и деятельностном материале.

Личностными результатами обучения физике в основной школе являются:

- сформированность ценностей образования, личностной значимости физического знания независимо от профессиональной деятельности, научных знаний и методов познания, творческой созидательной здорового образа процесса диалогического, деятельности, жизни, толерантного общения, смыслового чтения;
- формированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
- ❖ убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к научной деятельности людей,

- понимания физики как элемента общечеловеческой культуры в историческом контексте.
- мотивация образовательной деятельности учащихся как основы саморазвития и совершенствования личности на основе герменевтического, личностно-ориентированного, феноменологического и эколого-эмпатийного подхода.

Метапредметными результатами в основной школе являются универсальные учебные действия (далее УУД). К ним относятся:

- 1) личностные;
- 2) регулятивные, включающие также действиясаморегуляции;
- 3) познавательные, включающие логические, знаково-символические;
- 4) коммуникативные.
 - ❖ Личностиные УУД обеспечивают ценностно-смысловую ориентацию учащихся (умение соотносить поступки и события с принятыми этическими принципами, знание моральных норм и умение выделить нравственный аспект поведения), самоопределение и ориентацию в социальных ролях и межличностных отношениях, приводит к становлению ценностной структуры сознания личности.
 - **❖** *Регулятивные* УУД обеспечивают организацию учащимися своей учебной деятельности. К ним относятся:
- *целеполагание* как постановка учебной задачи на основе соотнесения того, что уже известно и усвоено учащимися, и того, что еще неизвестно;
- *планирование* определение последовательности промежуточных целей с учетом конечного результата; составление плана и последовательности действий;
- *прогнозирование* предвосхищение результата и уровня усвоения, его временных характеристик;
- *контроль* в форме сличения способа действия и его результата с заданным эталоном с целью обнаружения отклонений и отличий от эталона;
- *коррекция* внесение необходимых дополнений и корректив в план и способ действия в случае расхождения эталона, реального действия и его продукта;
- oиенка выделение и осознание учащимися того, что уже усвоено и что еще подлежит усвоению, осознание качества и уровня усвоения;
- волевая саморегуляция как способность к мобилизации сил и энергии; способность к волевому усилию, к выбору ситуации мотивационного конфликта и к преодолению препятствий.
 - **❖ Познавательные**УУД включают общеучебные, логические, знаковосимволические УД.

Общеучебные УУД включают:

- самостоятельное выделение и формулирование познавательной цели;
- поиск и выделение необходимой информации;
- структурирование знаний;
- выбор наиболее эффективных способов решения задач;
- рефлексия способов и условий действия, контроль и оценка процесса и результатов деятельности;
- смысловое чтение как осмысление цели чтения и выбор вида чтения в зависимости от цели;

- умение адекватно, осознано и произвольно строить речевое высказывание в устной и письменной речи, передавая содержание текста в соответствии с целью и соблюдая нормы построения текста;
- постановка и формулирование проблемы, самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;
- действие со знаково-символическими средствами (замещение, кодирование, декодирование, моделирование).

Логические УУД направлены на установление связей и отношений в любой области знания. В рамках школьного обучения под логическим мышлением обычно понимается способность и умение учащихся производить простые логические действия (анализ, синтез, сравнение, обобщение и др.), а также составные логические операции (построение отрицания, утверждение и опровержение как построение рассуждения с использованием различных логических схем – индуктивной или дедуктивной).

Знаково-символические УУД, обеспечивающие конкретные способы преобразования учебного материала, представляют действия моделирования, выполняющие функции отображения учебного материала; выделение существенного; отрыва от конкретных ситуативных значений; формирование обобщенных знаний.

❖ *Коммуникативные* УУД обеспечивают социальную компетентность и сознательную ориентацию учащихся на позиции других людей, умение слушать и вступать в диалог, участвовать в коллективном обсуждении проблем, интегрироваться в группу сверстников и строить продуктивное взаимодействие и сотрудничество со сверстниками и взрослыми.

Предметными результатами обучения физике в основной школе являются:

- ❖ знать и понимать смысл физических понятий, физических величин и физических законов;
- описывать и объяснять физические явления;
- ❖ использовать физические приборы и измерительные инструменты для измерения физических величин;
- ❖ представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости;
- ◆ выражать результаты измерений и расчетов в единицах Международной системы;
- приводить примеры практического использования физических знаний о механических, тепловых, электромагнитных и квантовых явлений;
- решать задачи на применение физических законов;
- осуществлять самостоятельный поиск информации в предметной области «Физика»;
- использовать физические знания в практической деятельности и повседневной жизни.

Предметные результаты освоения основной образовательной программы основного общего образования с учётом общих требований Стандарта и специфики изучаемых предметов, входящих в состав предметных областей, должны обеспечивать успешное обучение на следующей ступени общего образования.

5. Содержание тем учебного предмета.

Физика и физические методы изучения природы

Физика — наука о природе. Наблюдение и описание физических явлений. Измерение физических величин. Международная система единиц. Научный метод познания. Наука и техника.

Механические явления. Кинематика

Механическое движение. Траектория. Путь — скалярная величина. Скорость — векторная величина. Модуль вектора скорости. Равномерное прямолинейное движение. Относительность механического движения. Графики зависимости пути и модуля скорости от времени движения.

Ускорение — векторная величина. Равноускоренное прямолинейное движение. Графики зависимости пути и модуля скорости равноускоренного прямолинейного движения от времени движения. Равномерное движение по окружности. Центростремительное ускорение.

Динамика

Инерция. Инертность тел. Первый закон Ньютона. Взаимодействие тел. Масса — скалярная величина. Плотность вещества. Сила—векторная величина. Второй закон Ньютона. Третий закон Ньютона. Движение и силы.

Сила упругости. Сила трения. Сила тяжести. Закон всемирного тяготения. Центр тяжести.

Давление. Атмосферное давление. Закон Паскаля. Закон Архимеда. Условие плавания тел.

Условия равновесия твёрдого тела.

Законы сохранения импульса и механической энергии. Механические колебания и волны

Импульс. Закон сохранения импульса. Реактивное движение.

Кинетическая энергия. Работа. Потенциальная энергия. Мощность. Закон сохранения механической энергии. Простые механизмы. Коэффициент полезного действия (КПД). Возобновляемые источники энергии.

Механические колебания. Резонанс. Механические волны. Звук. Использование колебаний в технике.

Строение и свойства вещества

Строение вещества. Опыты, доказывающие атомное строение вещества. Тепловое движение и взаимодействие частиц вещества. Агрегатные состояния вещества. Свойства газов, жидкостей и твёрдых тел.

Тепловые явления

Тепловое равновесие. Температура. Внутренняя энергия. Работа и теплопередача. Виды теплопередачи. Количество теплоты. Испарение и конденсация. Кипение. Влажность воздуха. Плавление и кристаллизация. Закон сохранения энергии в тепловых процессах.

Преобразования энергии в тепловых машинах. КПД тепловой машины. Экологические проблемы теплоэнергетики.

Электрические явления

Электризация тел. Электрический заряд. Два вида электрических зарядов. Закон сохранения электрического заряда. Электрическое поле. Напряжение. Конденсатор. Энергия электрического поля.

Постоянный электрический ток. Сила тока. Электрическое сопротивление. Электрическое напряжение. Проводники, диэлектрики и полупроводники. Закон Ома для участка электрической цепи. Работа и мощность электрического тока. Закон Джоуля — Ленца. Правила безопасности при работе с источниками электрического тока.

Магнитные явления

Постоянные магниты. Взаимодействие магнитов. Магнитное поле. Магнитное поле тока. Действие магнитного поля на проводник с током.

Электродвигатель постоянного тока.

Электромагнитная индукция. Электрогенератор. Трансформатор.

Электромагнитные колебания и волны

Электромагнитные колебания. Электромагнитные волны. Влияние электромагнитных излучений на живые организмы.

Принципы радиосвязи и телевидения.

Свет — электромагнитная волна. Прямолинейное распространение света. Отражение и преломление света. Плоское зеркало. Линзы. Фокусное расстояние и оптическая сила линзы. Оптические приборы. Дисперсия света.

Квантовые явления

Строение атома. Планетарная модель атома. Квантовые постулаты Бора. Линейчатые спектры. Атомное ядро. Состав атомного ядра. Ядерные силы. Дефект масс. Энергия связи атомных ядер. Радиоактивность. Методы регистрации ядерных излучений. Ядерные реакции. Ядерный реактор. Термоядерные реакции.

Влияние радиоактивных излучений на живые организмы. Экологические проблемы, возникающие при использовании атомных электростанций.

Строение и эволюция Вселенной

Геоцентрическая и гелиоцентрическая системы мира. Физическая природа небесных тел Солнечной системы. Происхождение Солнечной системы. Физическая природа Солнца и звёзд. Строение Вселенной. Эволюция Вселенной.